Abstract
Here we present the holographic fabrication of large area 3D photonic structures using a single reflective optical element (ROE) with a single beam, single exposure process. The ROE consists of a 3D printed plastic support that houses 4, 5, or 6-fold symmetrically arranged reflecting surfaces which redirect a central beam into multiple side beams in an umbrella configuration to be used in multi-beam holography. With a circular polarized beam incident to silicon wafer reflecting surfaces at the Brewster angle, multiple linearly s-polarized side beams are generated. 3D photonic crystal structures of woodpile, Penrose quasi-crystal, and hexagonal symmetry were produced with ROEs that have 4+1, 5+1 and 6+1 beam configurations, respectively. Since the ROE design can be readily changed and implemented for different photonic crystal structures, this fabrication method is more versatile and cost effective than currently comparable single optical methods like prisms and phase masks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.