Abstract

Abstract Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.