Abstract

Photocatalytic degradation of antibiotic pollutant from contaminated water is essential for environmental protection. Rational development and design of composite photocatalyst with high catalytic activity and stability plays an important role in the photocatalytic field. Herein, 2D/2D highly crystalline carbon nitride/δ-Bi2O3 (HCCN/BO) Z-scheme heterojunction photocatalyst was synthesized via a facile solvothermal strategy. Experimental results show that the optimal HCCN/BO-3 sample exhibits a ~ 90% degradation rate during the photocatalytic degradation of the tetracycline (TC) within 60 min. The enhancement of photocatalytic activity is mainly attributed to the two reasons as follows: (i) the formation of 2D/2D heterojunction shortens the distance of the carriers from the body to the surface and gives two kinds of semiconductors rich active sites, improving the production and separation efficiency of photogenerated active carriers; (ii) the transmission path of photo-induced electrons follows the Z-scheme that can effectively inhibit the recombination of electrons and holes, expand the wide band gap, and harvest more visible light, separate oxidation and reduction active sites to retain redox capacity. Finally, the intermediate in the degradation pathway is determined using liquid chromatography-series mass spectrometry (LC-MS), and the TC degradation pathway for the photocatalytic reaction process of this composite system is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.