Abstract
Detectors that can simultaneously provide fine time and spatial resolution have attracted wide-spread interest for applications in several fields such as high-energy and nuclear physics as well as in low-energy electron detection, photon science, photonics and imaging. Low-Gain Avalanche Diodes (LGADs), being fabricated on thin silicon substrates and featuring a charge gain of up to 100, exhibit excellent timing performance. Since pads much larger than the substrate thickness are necessary to achieve a spatially uniform multiplication, a fine pad pixelation is difficult. To overcome this limitation, the AC-coupled LGAD approach was introduced. In this type of device, metal electrodes are placed over an insulator at a fine pitch, and signals are capacitively induced on these electrodes. At Brookhaven National Laboratory, we have designed and fabricated prototypes of AC-coupled LGAD sensors. The performance of small test structures with different particle beams from radioactive sources are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.