Abstract

The use of carbon nanotubes (CNTs) in nanotechnology and leading industries is of extreme importance due to its various applications. One such application is producing Aluminum reinforced nanocomposites which may find applications in the aerospace and automobile industries. Scientists and engineers have, recently, concentrated increasing attention on the manufacturing and modeling of such materials. This paper deals with preparing Carbon Nanotube Reinforced Aluminum Nanocomposite (CNRAN) and predicting its mechanical and surface properties using the finite element method (FEM). To prepare the reinforced nanocomposite, a pre-alloyed powder was milled in a planetary ball mill under the argon atmosphere. Multi-wall carbon nanotubes (MWCNTs) were then added to the powder in a particular procedure. Next, a finite element model consisting of MWCNTs as the fibers and Aluminum as the matrix was constructed. A series of nano-indentation tests were carried out to obtain the mechanical and surface properties of the constructed material. The finite element models were then used to predict the results obtained from real indentation tests. The predicted hardness and elastic modulus from the FE model show good agreement with experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.