Abstract

Co/Cu multilayer nanowires fabricated in an array using anodized aluminium oxide (AAO) template has been investigated. Experimental conditions are optimized to fabricate Co/Cu multilayer systems with fixed Cu and variable Co layer thicknesses. Magnetization reversal mode is found to depend on the Co layer thickness. A transition occurs from coherent rotation to a combination of coherent and curling rotation at around t(Co) = 60 nm with increasing t(Co). The reversal modes have been investigated using the magnetic hysteresis loops measured at room temperature for Co/Cu nanowires placed at various angles between the directions of the nanowire axis and external fields using a vibrating sample magnetometer. The magnetic easy axis changes from the direction perpendicular to nanowires to that parallel to the nanowires at around t(Co) = 60 nm, indicating a change in the magnetization reversal mode. The reversal mode for the nanowires with thin disk-shaped Co layers is of a coherent rotation type, while that for long rod-shaped Co layers can be explained by a combination of coherent rotation and a curling mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.