Abstract

This study proposes 3D-printed Poly L-lactic acid (PLA) scaffolds coated with alginate/MgO, and includes three different cellular topologies. Three unique scaffold models were considered: Perovskite type 1 (P1), Perovskite type 2 (P2), and IWP. Each scaffold was coated with alginate/MgO at the concentrations of 0 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt%. For morphological and phase study, the microstructure of fabricated scaffolds was characterized using a Field Emission Scanning Electron Microscope (FESEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis. Besides, the biological characteristics of scaffolds, such as biocompatibility, antibacterial activity, and cell survival were studied after 21 days of soaking in the simulated body fluid (SBF). The results of biological studies indicate that the apatite layer covered the majority of composite scaffold's surface and sealed the pores' surface. The material properties of Alginate/MgO RVEs were evaluated under PBC, and it described that the elastic modulus enhanced from 100 (pure Alginate) to 130 MPA by adding 20 wt% MgO nanoparticles. The presented findings were compared to the results obtained by the experimental procedure and revealed satisfactory agreement. RVE-achieved material properties were used in the additional studies on the scaffolds to find the best candidate due to the material properties and architectures. Furthermore, experiment and finite element simulation were used to evaluate the mechanical properties of scaffolds under the compressive deformation. According to the results, the compressive strength of structures follows the order σPerovskite type 1>σPerovskite type 2 >σIWP. The results indicate that increasing MgO content from 0 wt% to 20 wt% enhances each structure's compressive strength and elastic modulus. In conclusion, based on the biological findings and simulation results, PLA scaffold with Perovskite type 1 (P1) architecture coated with Alginate/ 20 wt% MgO had the best response which is the final research candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.