Abstract

SiC and AlN form a solid solution in the wide compositional range, expectantly leading to control of the semiconductive property. In the present work, the SiC-AlN composites were fabricated by sintering process, and evaluated with emphasis on the distribution of SiC and AlN and electrical property. SiC and AlN powders were mixed at a molar ratio between 90:10 and 10:90, and sintered at 1900-2100 °C for 30 min under 50 MPa in Ar atmosphere by spark plasma sintering technique. The sintered bodies reached high densities over 95 % of theoretical, and the grain size increased with an increase in the sintering temperature and the AlN content. The SiC-AlN composites had 3C and 2H phases in SiC-rich composition, while 2H phase only in AlN-rich composition, and the mutual dissolution between SiC and AlN was enhanced at high temperatures. The electrical conductivity decreased with dissolution of AlN into SiC because of the increase in band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.