Abstract

The traditional interlayer of PbO2 electrode possessed many problems, such as short service lifetime and limited specific surface area. Herein, a novel and efficient Ti/polyaniline-Co/PbO2–Co electrode was conctructed employing cyclic voltammetry to introduce a Co-doped polyaniline interlayer and anodic electrodeposition to synthetize a β-PbO2-Co active layer. Compared with pristine PbO2 electrode, Ti/polyaniline-Co/PbO2–Co exhibited more compact crystalline shape and higher active sites amounts. Pratically, the electrochemical degradation of 5 mg L−1 cephalexin in real secondary effluents was effectively achieved by the novel anode with 87.42% cephalexin removal and 71.8% COD mineralization after 120 min of 15 mA cm−2 electrolysis. The hydroxyl radical production and electrochemical stability were increased by 3.16 and 3.27 times respectively. The cephalexin degradation pathway was investigated by combining a density functional theory-based theoretical approach and LC-QTrap-MS/MS. The most likely cleavage point of the β-lactam ring was the O=C–N bond, whose attack would produce small molecular compounds containing the thiazole and 4, 6-thiazine rings. Further oxidation produced inorganic ions; quantitative investigations indicated the amino groups to undergo decomposition to form aqueous NH4+, which was further oxidized to NO3−. The accumulation of NO3− and SO42−, combined with a decrease in toxicity toward Escherichia coli, demonstrated the efficient mineralization of cephalexin on the Ti/polyaniline-Co/PbO2–Co electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.