Abstract

Recently, more attention has been devoted to porous implants to avoid stress-shielding effects and facilitate anchor effects. In addition, our previous research revealed that uniaxially aligned pores promoted early recovery of bone tissue with high bone quality similar to that of intact bone. In this study, Ti-based implant materials with uniaxially aligned pores were fabricated using the electron beam melting (EBM) method with 2 types of grid spacing, 0.5 and 1.0 mm. Although grid spacing was varied, the constituent phase and microstructure of the products were homogenous regardless of the grid spacing. Uniaxially aligned pores were created when the grid spacing was 1.0 mm, whereas almost solid structures with random pores were formed when the grid spacing was 0.5 mm. Young’s modulus of the products with the grid spacing of 1.0 mm was 34 GPa; this value is close to that of the bone. It is concluded that the porous material with aligned pores is suitable as a bone implant to reduce stress-shielding effects and to induce bone regeneration with good bone quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.