Abstract

This study aims to improve the strength of porous BCP samples by the addition of titanium dioxide (TiO2), the well known biocompatible and strong ceramic. BCP powder with HA/TCP ratio of 70/30 (BCP7030) obtained by mixing a pure HA and β-TCP powder. TiO2 powder with 2 (BCP_2Ti), 5 (BCP_5Ti) and 10 (BCP_10Ti) %wt were added into the BCP7030 powder, then ball milled in ethanol for 6 hrs. The porous samples were fabricated by the combination of the gel-casting and freeze drying techniques. All samples were sintered at 1100°C for 2 hrs. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to determine crystal structures and morphology of the sintered samples, respectively. Mechanical properties and porosity of samples were measured by using the universal testing machine and Archimedess principle, respectively. XRD results showed that the phases of the undoped sample can be indexed HA and β-TCP with the ratio of 70/30 as the major phases. In BCP_2Ti, CaTiO3 was observed as a minor phase among the crystallization of HA and β-TCP with the proportion of 30:70. Meanwhile, in BCP_5Ti and BCP_10Ti, XRD patterns revealed a completely transformation of HA to β-TCP with minor phases of CaTiO3 and TiO2. The microstructure of sintered samples present highly porous structure which consisted of two-dimensional pore channels along the long axis and the short axis, which replicates the ice and pore orientation in the direction of freezing. Relatively, the porosity of the samples was increased with the amount of TiO2. Surprisingly, an additions of the TiO2 was not rather improved the mechanical strength of porous BCP7030 in this study. This might be a result of a high percentage of porosity (84%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.