Abstract
Magnesium (Mg), a potential biodegradable material, has drawn wide attention in the bone reconstruction field. However, Mg alloys, served as the bone graft substitution, remain a clinical challenge, the antibacterial activity of which is required to be enhanced. Here, we prepared biodegradable magnesium Mg-Zn-Y-Nd-Ag and then had it been further densified by extruding. The microstructure evolution of the as-cast and as-extruded Mg- Zn-Y-Nd-Ag was characterized using optical microscope and X-ray diffraction analyses (XRD). The results showed that the microstructure of the as-cast alloys was mainly dendrites, between which, the second phase was mainly distributed; with the increase of Ag additions, grain structure was further refined as well as the increase of amount of the second phase. After the extrusion, the grains were further refined. Microhardness tests indicated that both of the increase of Ag content and the extrusion process improved the microhardness of the alloys, specially the later. A systematic investigation of the in vivo antibacterial capability of Staphylococcus aurous and Escherichia coli was performed, and the results of which indicated that all Mg-Zn-Y-N-xAg (x = 0.2, 0.4, 0.6, 0.8) alloys exhibited certain antibacterial property, which would increased with the increase of Ag content. Taken all together, the antimicrobial property of the as-extruded alloy containing 0.4 wt% Ag exhibited the relatively better antimicrobial properties and mechanical property with the relatively small loss in corrosion resistance, which suggested the potential utility of as-extruded Mg-Zn-Y-N-0.4Ag in treating orthopedic infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.