Abstract

A nanotube electronic needle biosensor was developed to provide fast, low cost, accurate detection of biomolecules. The sensor was formed by synthesizing highly aligned multi-wall carbon nanotube arrays. Nanotube bundles from the array were welded onto the tips of tungsten needles using a microscope. The needles were then encased in glass and a polymer coating. Cyclic voltammetry (CV) for the respective reduction of 6 mM K 3 Fe(CN) 6 in a 1.0 M KNO 3 was performed to examine the redox behavior of the nanotube needle. The CV results showed a steady-state response attributable to radial diffusion with a high steady-state current density. An amperometric sensor was then developed for glucose detection by physical attachment of glucose oxidase on the nanotube needle. A label-free immunosensor based on electrochemical impedance spectroscopy was also formed. The nanotube needle amperometric have good sensitivity with a low detection limit, and the possibility exists to keep decreasing the size of the needle to increase the sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.