Abstract
Nanocrystalline Al-5vol%Al2O3 nanocomposite was synthesised by mechanical milling of a mixture containing nanometric alumina with an average particle size of 35 nm. Morphology of as-synthesised powder was investigated by SEM while crystallite size of Al matrix was determined by XRD analysis. The results confirmed formation of nanocrystalline Al matrix induced by severe plastic deformation during mechanical milling. Nanocomposite bars were produced by hot powder extrusion route. TEM investigation of as-extruded nanocomposite revealed formation of elongated grains along the extrusion direction decorated by alumina nanoparticles. Tensile and compressive properties of as-extruded nanocomposite were measured and compared with those of monolithic Al. The results show a significant increase in the strength of Al due to ultrafine-grained structure coupled with the nanoparticles induced strengthening mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.