Abstract

F1-ATPase, the catalytic part of FoF1-ATP synthase, rotates the central gamma subunit within the alpha3beta3 cylinder in 120 degrees steps, each step consuming a single ATP molecule. However, how the catalytic activity of each beta subunit is coordinated with the other two beta subunits to drive rotation remains unknown. Here we show that hybrid F1 containing one or two mutant beta subunits with altered catalytic kinetics rotates in an asymmetric stepwise fashion. Analysis of the rotations reveals that for any given beta subunit, the subunit binds ATP at 0 degrees, cleaves ATP at approximately 200 degrees and carries out a third catalytic event at approximately 320 degrees. This demonstrates the concerted nature of the F1 complex activity, where all three beta subunits participate to drive each 120 degrees rotation of the gamma subunit with a 120 degrees phase difference, a process we describe as a 'sequential three-site mechanism'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.