Abstract

Elevated level of interleukin (IL)-17, predominantly produced by T helper (Th) 17 cells, has been implicated in diabetic retinopathy (DR), but it remains unclear whether IL-17 is involved in the pathogenesis of DR. Ins2Akita (Akita) mice spontaneously develop diabetes, and show early pathophysiological changes in diabetic complications. On the other hand, interferon-γ knock out (GKO) mice exhibit high differentiation and activation of Th2 and Th17 cells as a result of Th1 cell inhibition. In this study, Ins2Akita IFN-γ–deficient (Akita-GKO) mice were established by crossbreeding Akita mice with GKO mice, and Th17-mediated immune responses on DR were investigated. Blood glucose levels (BGL) of Akita mice and Akita-GKO mice were significantly higher than those of age-matched wild type (WT) or GKO mice, and there was no significant difference in BGL between Akita and Akita-GKO mice. Relative mRNA expression of ROR-γt that is a transcriptional factor of Th17 cells but not GATA-3 that is for Th2 cells was significantly upregulated only in Akita-GKO mice compared with WT mice, and the proportions of IL-17 and IL-22–producing splenic CD4+ cells were significantly higher in Akita-GKO mice than in wild type (WT), Akita, or GKO mice. In the retina, mRNA expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) were increased in Akita-GKO mice more than in Akita or GKO mice, and statistically significant differences were observed between Akita-GKO mice and WT mice. Leukostasis in retinal vessels and ocular level of VEGF protein increased significantly in Akita-GKO mice compared with the other groups. Edematous change in the retinal surface layer, retinal exudative lesions depicted as areas of hyperfluorescence in fluorescein angiography (FA), and vascular basement membrane thickening in all layers of the retina were also observed in Akita-GKO mice at 9-week-old but not in age-matched Akita or GKO mice. These results suggested that Th17 cell-mediated immune responses might be involved in promotion of functional and morphological changes in the retina of mice spontaneously developing diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.