Abstract

Among the many treatments for Bladder cancer (BCa) patients, radiotherapy is an effective way to preserve the bladder. However, as the frequency of irradiation increases, the tumor cells appear "acquired radio-resistance" (ARR) and loss the sensitivity to radiotherapy. To explore the molecular mechanism of ARR, two BCa cell lines, 5637 and T24, were enrolled here and their ARR counterparts, 5637R and T24R, were obtained by exposure to γ-ray of 2 Gy for 30 times. Compared to parental cells, ARR cells have significantly enhanced stem cell-like phenotype, robust DNA damage repair capabilities and elevated expression of zeste homolog 2 (EZH2). Decreasing EZH2 expression, both parental and ARR cells exhibited reduced abilities of forming microsphere and repairing DNA damage, but enhanced cells radio-sensitivity and intracellular autophagy compared to untreated cells. Down-regulation the expression of EZH2 induced an increasing of both LC3 and P62 in parental cells, while in ARR cells, only LC3 increased upon EZH2 reduction. On the other hand, UNC1999 treatment caused the increasing of LC3B and P62 in all cells, suggested that siEZH2 and UNC1999 affect ARR cells autophagy through different mechanisms. In vivo study showed that pre-treated with UNC1999 greatly enhanced T24R cells sensitivity to IR, and knocking down the expression of EZH2 significantly suppressed the tumor growth. Combined with bioinformatics data analysis, we speculate that EZH2 is an important biomolecule linking the diagnosis, radiotherapy and prognosis of BCa. EZH2 targeted therapy may be an effective way to overcome ARR of BCa, and is worthy of in-depth study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.