Abstract

We have experimentally studied the effects on the spin Hall angle due to systematic addition of Pt into the light metal Cu. We perform spin torque ferromagnetic resonance measurements on Py/CuPt bilayer and find that as the Pt concentration increases, the spin Hall angle of CuPt alloy increases. Moreover, only 28% Pt in CuPt alloy can give rise to a spin Hall angle close to that of Pt. We further extract the spin Hall resistivity of CuPt alloy for different Pt concentrations and find that the contribution of skew scattering is larger for lower Pt concentrations, while the side-jump contribution is larger for higher Pt concentrations. From technological perspective, since the CuPt alloy can sustain high processing temperatures and Cu is the most common metallization element in the Si platform, it would be easier to integrate the CuPt alloy based spintronic devices into existing Si fabrication technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.