Abstract
In this paper, we study the extremal behavior of stationary mixed moving average processes of the form Y(t)=∫ℝ+×ℝf(r,t-s) dΛ(r,s), t∈ℝ, where f is a deterministic function and Λ is an infinitely divisible, independently scattered random measure whose underlying driving Lévy process is regularly varying. We give sufficient conditions for the stationarity of Y and compute the tail behavior of certain functionals of Y. The extremal behavior is modeled by marked point processes on a discrete-time skeleton chosen properly by the jump times of the underlying driving Lévy process and the extremes of the kernel function. The sequences of marked point processes converge weakly to a cluster Poisson random measure and reflect extremes of Y at a high level. We also show convergence of the partial maxima to the Fréchet distribution. Our models and results cover short- and long-range dependence regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.