Abstract

Vanadium pentoxide (V2O5) has received considerable attention as a lithium battery cathode because its specific capacity (>250 mA h g−1) is higher than those (<170 mA h g−1) of most commercial cathode materials. Despite this conspicuous advantage, V2O5 has suffered from limited cycle life, typically below a couple of hundred cycles due to the agglomeration of its particles. Once V2O5 particles are agglomerated, the insulating phases continuously expand to an extent that ionic and electronic conduction is severely deteriorated, leading to the significant capacity decay. In this study, in order to overcome the agglomeration issue, the electrodes were uniquely designed such that ultrathin V2O5 nanowires were uniformly incorporated into graphene paper. In this composite structure, the dispersion of V2O5 nanowires was preserved in a robust manner, and, as a result, enabled substantially improved cycle life: decent specific capacities were preserved over 100000 cycles, which are 2–3 orders of magnitude larger than those of typical battery materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.