Abstract

A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let S be a nontrivial finite regular linear space and G ≤ Aut(S). Suppose that G is extremely primitive on points and let rank(G) be the rank of G on points. We prove that rank(G) ≥ 4 with few exceptions. Moreover, we show that Soc(G) is neither a sporadic group nor an alternating group, and G = PSL(2, q) with q + 1 a Fermat prime if Soc(G) is a finite classical simple group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.