Abstract

High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding systems and mechanisms to increase pollination opportunities can be selected in high-elevation ecosystems.

Highlights

  • High-elevation environments are characterized by low temperatures, strong winds, and overcast conditions, which make them unsuitable for insect pollinators [1]

  • Transitions toward autogamous self-fertilization have been proposed as an evolutionary solution for alpine and arctic plants that deal with low pollinator availability

  • Breeding system Pollination treatment significantly affected the percentage of achene set of C. renifolia (Table 2)

Read more

Summary

Introduction

High-elevation environments are characterized by low temperatures, strong winds, and overcast conditions, which make them unsuitable for insect pollinators [1]. In these ecosystems, several community studies have documented that the levels of diversity, availability and activity of insect pollinators suffer progressive reductions with elevation above the timberline as a consequence of harsh climatic conditions that limit insect flight [2,3,4,5,6,7,8,9]. Transitions toward autogamous self-fertilization have been proposed as an evolutionary solution for alpine and arctic plants that deal with low pollinator availability. Self-fertilization is far more common in annuals than in perennials [19,20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.