Abstract
In this paper, we establish the maximal and minimal ranks of the solution to the consistent system of quaternion matrix equations A 1 X = C 1 , A 2 X = C 2 , A 3 XB 3 = C 3 and A 4 XB 4 = C 4 , which was investigated recently by Wang [Q.W. Wang, The general solution to a system of real quaternion matrix equations, Comput. Math. Appl. 49 (2005) 665–675]. Moreover, corresponding results on some special cases are presented. As an application, a necessary and sufficient condition for the invariance of the rank of the general solution to the system mentioned above is presented. Some previous known results can be regarded as the special cases of this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.