Abstract
Human activity recognition (HAR) is a main research field of context-aware computing; the performance of HAR mainly depends on the feature extraction method and classification algorithm. Extreme learning machine (ELM) is a single hidden layer neural network, which has better classification and generalization ability. However, ELM is not suitable for feature extraction. Deep learning is a hot research field as it can automatically extract significant features from raw data. In this paper, we propose an approach: an ELM-based deep model, which combined convolutional neural network (CNN), multilayer ELM (ML-ELM) as feature extractor, and used kernel ELM (KELM) as classifier. We used CNN and ML-ELM to extract significant features, and used KELM to achieve stable performance. The performance of proposed approach is validated on two public HAR datasets, and the experimental results show that the proposed approach is effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.