Abstract
In this paper is described the original (basic) Extreme Learning Machine (ELM). Properties like robustness and sensitivity to variable selection are studied. Several extensions of the original ELM are then presented and compared. Firstly, Tikhonov-Regularized Optimally-Pruned Extreme Learning Machine (TROP-ELM) is summarized as an improvement of the Optimally-Pruned Extreme Learning Machine (OP-ELM) in the form of a L 2 regularization penalty applied within the OP-ELM. Secondly, a Methodology to Linearly Ensemble ELM ( -ELM) is presented in order to improve the performance of the original ELM. These methodologies (TROP-ELM and -ELM) are tested against state of the art methods such as Support Vector Machines or Gaussian Processes and the original ELM and OP-ELM, on ten different data sets. A specific experiment to test the sensitivity of these methodologies to variable selection is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.