Abstract
A doped state of heterostructure, based on chemical vapour deposition grown graphene and polyelectrolytes (polyallylamine hydrochloride and polyacrylic acid), has been studied. The doping was realized electrochemically by application of an electrode potential in LiClO4–acetonitrile electrolyte solution. Our new setup allowed us to achieve extreme doping levels for both positive and negative electrode potentials. The extreme doping of graphene was demonstrated by a large shift of the G mode frequency in the Raman spectrum. In addition a significant enhancement of the G mode at large positive and also negative electrode potentials has been experimentally observed. The G mode intensity enhancement was attributed to cancelling of a part of the quantum Raman pathways thus reducing the destructive quantum interference effect. Since this effect only occurs if the Fermi level achieves half of the laser excitation energy, experimental observation of this phenomenon also confirms the extreme doping levels of graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.