Abstract

The damage and collapse accidents of wind turbines during violent typhoons and rainstorms have increased in recent years. To determine the dynamic response characteristics of high-power wind turbines under extreme conditions, wind load and rain load are simulated. The typhoon average wind velocity and fluctuating wind velocity are simulated by the unstable wind profile and harmony superposition method. The raindrop size distribution is simulated by the M-P spectrum, and the rain load is calculated according to the momentum theorem. A finite element model is established to study the aerodynamic responses of a wind turbine under random typhoon load and typhoon-rain loads. The maximum displacements and accelerations at the tower top and the maximum von Mises stresses at the tower bottom are calculated and compared after considering various combinations of wind direction deflections and rainfall intensities. The results indicate that instantaneous wind direction deflection has a substantial impact on the dynamic responses of wind turbines, and after introducing the effect of rain, the dynamic responses increase up to 13.7% with increasing rainfall intensities. This study has significant implications for analysing collapse accidents of wind turbines and for optimising the design of wind turbines under extreme typhoon conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.