Abstract

We generalize the concept of extremal index of a stationary random sequence to the series scheme of identically distributed random variables with random series sizes tending to infinity in probability. We introduce new extremal indices through two definitions generalizing the basic properties of the classical extremal index. We prove some useful properties of the new extremal indices. We show how the behavior of aggregate activity maxima on random graphs (in information network models) and the behavior of maxima of random particle scores in branching processes (in biological population models) can be described in terms of the new extremal indices. We also obtain new results on models with copulas and threshold models. We show that the new indices can take different values for the same system, as well as values greater than one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.