Abstract

The rate of extraterrestrial accretion for particles in the size range 0.45 μm to ∼20 μm was determined from dust concentrates extracted from Greenland Ice Sheet Project 2 (GISP2) ice core samples. Using instrumental neutron activation analysis (INAA), we determined the iridium (Ir) content of the dust. Following a core-specific correction for terrestrial Ir and assuming a chondritic Ir abundance of 500 ppb, we measure an average accretion rate for 0.45 μm to ∼20 μm particles over the entire Earth of 0.22 (± 0.11) × 10 9 g/yr (kton/yr) for 317 years of ice through the interval 6 to 20 ka. This is consistent with the interplanetary dust accretion rate of 0.17 (± 0.08) x 10 9 g/yr that we derive from published 3He data for the GISP2 core. Accounting for particles that are larger and smaller than those detected by or experiment, our best estimate of the total accretion rate (including particle sizes up to about 4 cm in diameter) is 2.5 × 10 9 g/yr. The uncertainty in this estimate is dominated by statistical fluctuations in the number of particles expected to end up in the ice core and not by measurement error. Based on Monte Carlo simulations, we estimate the upper limit for total extraterrestrial accretion to Earth of 6.25 × 10 9 g/yr (95% confidence level). This accretion rate is consistent with some estimates from micrometeorite concentrations in polar ice, estimates from ground-based radar studies, and with accretion estimates of 3He-bearing interplanetary dust particles, assuming that 3He is correlated with particle surface area. It is, however, lower than estimates based on platinum group element studies of marine sediments. The conflict may indicate systematic errors with either the marine or the non-marine samples, departures from the assumed particle spectrum of Grün and coauthors, or time-variable accretion rates, with the early Holocene period being characterized by low levels of accretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.