Abstract

A reasonably sensitive and highly selective spectrophotometric method for the determination of mercury(II) is proposed. The method is based on the extraction of the ion-associate formed by a mercury(II) thiacrown ether cationic complex with Bromocresol Green as the anionic counter-ion using chloroform as the extracting solvent. The effect of thiacrown ethers of different cavity sizes, namely 1,4,7,10,13-pentathiacyclopentadecane (PTP) and 1,4,7,10,13,16-hexathiacyclooctadecane (HTO), the thiacrown ether concentration, the extracting solvent, the bromocresol green concentration and the aqueous phase pH on the extraction were investigated. Measurement of the absorbance at the λ max (420 nm) of the extracted ion-associate reveals that Beer's law is obeyed over 0.5–12.0 ppm mercury(II) for both ligands. Slight interference from copper(II) and cadmium(II) is exhibited by the PTP ligand, while HTO is negligibly affected by these metal ions. Strong interference from silver(I) is evident for both ligands while alkali, alkaline earth and other transition metals tested posed negligible interference. Analysis of mercury in synthetic complex mixtures was satisfactory

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.