Abstract

Aqueous biphasic separation systems are being developed for the treatment of liquid radioactive wastes. These extraction systems are based on the use of polyethylene glycols (PEGs) for the selective extraction and recovery of long-lived radionuclides, such as {sup 129}I, {sup 75}Se, and {sup 99}Tc, from caustic solutions containing high concentrations of nitrate, nitrite, and carbonate. Because of the high ionic strengths of supernatant liquids in Hanford underground storage tanks, aqueous biphasic systems can be generated by simply adding aqueous PEG solutions directly to the waste solution. In the process, anionic species like I{sup -} and TcO{sup -}{sub 4} are selectively transferred to the less dense PEG phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The authors present experimental data on extraction of technetium from several simulated Hanford tank wastes at 25{degrees} and 50{degrees}C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.