Abstract

This article delves into examining exact soliton solutions within the context of the generalized nonlinear Schrödinger equation. It covers higher-order dispersion with higher order nonlinearity and a parameter associated with weak nonlocality. To tackle this equation, two reputable methods are harnessed: the sine-Gordon expansion method and the [Formula: see text]-expansion method. These methods are employed alongside suitable traveling wave transformation to yield novel, efficient single-wave soliton solutions for the governing model. To deepen our grasp of the equation's physical significance, we utilize Wolfram Mathematica 12, a computational tool, to produce both 3D and 2D visual depictions. These graphical representations shed light on diverse facets of the equation's dynamics, offering invaluable insights. Through the manipulation of parameter values, we achieve an array of solutions, encompassing kink-type, dark soliton, and solitary wave solutions. Our computational analysis affirms the effectiveness and versatility of our methods in tackling a wide spectrum of nonlinear challenges within the domains of mathematical science and engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.