Abstract

Abstract Mineralized indicator minerals are an important geological and mineral exploration indicator. Rapid extraction of mineralized indicator minerals from hyperspectral remote sensing images using ensemble learning model has important geological significance for mineral resources exploration. In this study, two mineralized indicator minerals, limonite and chlorite, exposed at the surface of Qinghai Gouli area were used as the research objects. Sparrow search algorithm (SSA) was combined with random forest (RF) and gradient boosting decision tree (GBDT) ensemble learning models, respectively, to construct hyperspectral mineralized indicative mineral information extraction models in the study area. Youden index (YD) and ore deposit coincidence (ODC) were applied to evaluate the performance of different models in the mineral information extraction. The results indicate that the optimization of SSA parameter algorithm is obvious, and the accuracy of both the integrated learning models after parameter search has been improved substantially, among which the SSA-GBDT model has the best performance, and the YD and the ODC can reach 0.661 and 0.727, respectively. Compared with traditional machine learning model, integrated learning model has higher reliability and stronger generalization performance in hyperspectral mineral information extraction and application, with YD greater than 0.6. In addition, the distribution of mineralized indicative minerals extracted by the ensemble learning model after parameter optimization is basically consistent with the distribution pattern of the fracture tectonic spreading characteristics and known deposits (points) in the area, which is in line with the geological characteristics of mineralization in the study area. Therefore, the classification and extraction model of minerals based on hyperspectral remote sensing technology, combined with the SSA optimization algorithm and ensemble learning model, is an efficient mineral exploration method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.