Abstract
We present an analysis of the role of the running coupling constant at the intersection of perturbative and non-perturbative QCD. Although the approaches that have been considered so far in these two regimes appear to be complementary to each other, a unified description might be derived through the definition of the effective coupling, as they both provide ways of analyzing its freezing at low values of the scale. We extract the effective coupling from all available experimental data on the unpolarized structure function of the proton, F2p, at large values of Bjorken x, including the resonance region. We suggest that parton–hadron duality observed in this region can be explained if non-perturbative effects are included in the coupling constant. The outcome of our analysis is a smooth transition from perturbative to non-perturbative QCD physics, embodied in the running of the coupling constant at intermediate scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.