Abstract

The work presents an electrochemical study on preparation of Al–Li–Eu alloys on a tungsten electrode in molten LiCl–KCl–AlCl 3–Eu 2O 3 system at 753 K and 953 K. Gibbs energy shows that AlCl 3 can chloridize Eu 2O 3, with a discharge in the form of Eu(III) ions on the cathode. The electrochemical behavior of Al(III), Li(I) and Eu(III) and alloy formation processes were investigated by cyclic voltammetry, square wave voltammetry, and chronopotentiometry. Cyclic voltammetry indicated that the underpotential deposition of europium on pre-deposited Al forms two Al–Eu intermetallic compounds at electrode potentials around −2.00 V and −2.34 V, respectively. And the underpotential deposition of lithium on Al surface at about −2.24 V leads to a formation of Al–Li alloy. X-ray diffraction (XRD) indicated that Al–Li–Eu alloys with different phases were obtained via galvanostatic electrolysis. The microstructure and micro-zone chemical analysis of Al–Li–Eu alloy were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), respectively. The analysis of EDS showed that element Eu mainly distributes on needle-like precipitate, and not homogeneously in the Al–Li–Eu alloy. Composition of the alloys was analyzed by inductive coupled plasma analysis, and current efficiency was also determined with respect to the alloy composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.