Abstract
We investigate the problem of extracting rules, expressed in Horn logic, from neural network models.Our work is based on the exact learning model, in which a learner interacts with a teacher (the neural network model) via queries in order to learn an abstract target concept, which in our case is a set of Horn rules. We consider partial interpretations to formulate the queries. These can be understood as a representation of the world where part of the knowledge regarding the truthness of propositions is unknown. We employ Angluin’s algorithm for learning Horn rules via queries and evaluate our strategy empirically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Northern Lights Deep Learning Workshop
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.