Abstract
Despite the physical significance of the slanted holographic gratings, most materials research presented in literature involves the use of the unslanted recording geometry. A physically accurate electromagnetic model of the slanted holographic non-uniform gratings recorded in photopolymers is necessary in order to extract key material parameters. In this paper we present derivation of a model based on a set of two coupled differential equations, which include the effects of: (i) An exponential decay of refractive index modulation in the direction of the beam propagation due to the variation of absorption with depth; (ii) Gaussian profile of refractive index modulation due to recording by finite Gaussian beams profile, and (iii) A quadratic variation in the spatial period of the grating (i.e. chirp). The model is applied to fit experimental data, i.e. angular scans, of unslanted gratings recorded in Polyvinylalcohol/Acrylamide material for different slant angles in order to extract key volume grating parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.