Abstract

A technology is investigated to extract nanosecond pulse noise hidden signals via stochastic resonance, which is based on surface plasmon bistability. A theoretical model for recovering nanosecond pulse signals is derived to describe the nonlinear process. It is found that the incident angle, polarization state, medium properties, and input noise intensity all determine the efficiency and fidelity of the output signal. The bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 6 in a wide range of input signal-to-noise ratio from 1∶5 to 1∶30. Meanwhile, the distortion in the time domain induced by phase shift can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.