Abstract

Skin pigmentation is controlled by complex crosstalk between melanocytes and keratinocytes and is primarily induced by exposure to ultraviolet (UV) irradiation. Several aspects of UVA-induced signaling remain to be explored. In skin cells, UVA induces plasma membrane damage, which is repaired by lysosomal exocytosis followed by instant shedding of extracellular vesicles (EVs) from the plasma membrane. The released EVs are taken up by neighboring cells. To elucidate the intercellular crosstalk induced by UVA irradiation, EVs were purified from UVA-exposed melanocytes and added to keratinocytes. Transcriptome analysis of the keratinocytes revealed the activation of TGF-β and IL-6/STAT3 signaling pathways and subsequent upregulation of microRNA (miR)21. EVs induced phosphorylation of ERK and JNK, reduced protein levels of PDCD4 and PTEN, and augment antiapoptotic signaling. Consequently, keratinocyte proliferation and migration were stimulated and UV-induced apoptosis was significantly reduced. Interestingly, melanoma cells and melanoma spheroids also generate increased amounts of EVs with capacity to stimulate proliferation and migration upon UVA. In conclusion, we present a novel intercellular crosstalk mediated by UVA-induced lysosome-derived EVs leading to the activation of proliferation and antiapoptotic signaling via miR21.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.