Abstract
We examined the role of p38, p42, and p44 mitogen-activated protein kinase (MAPK) isoforms and cytosolic phospholipase A(2) (cPLA(2)) activation in human eosinophil adhesion to plate-coated fibronectin (FN). In the control state, eosinophil adhesion was maximal, with 10 microg/ml FN at 30 min, and decreased after 60-90 min. Western blot analysis demonstrated that p44/42 MAPK (extracellular signal-regulated kinase (ERK)1/2) and cPLA(2) were phosphorylated during adhesion to FN, whereas p38 MAPK phosphorylation was unchanged. Preincubation of eosinophils with U0126 or PD98059, two structurally unrelated MAPK kinase inhibitors, or arachidonic trifluoromethyl ketone, a cPLA(2) inhibitor, blocked eosinophil adhesion to FN. By contrast, eosinophil adhesion was unaffected by SB203580, a p38 MAPK inhibitor. Pretreatment of eosinophils with okadaic acid, a serine/threonine phosphatase inhibitor, at the concentrations that induced ERK1/2 and cPLA(2) phosphorylation caused an increase in maximal eosinophil adhesion to FN for >60 min. MAPK kinase inhibition but not p38 inhibition also blocked FN-mediated F-actin redistribution in eosinophils and prevented cPLA(2) phosphorylation caused by adhesion to FN. These results demonstrate that ERK1/2 mediating cPLA(2) activation is essential for eosinophil adhesion to FN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.