Abstract

The present study investigated the actions of extracellular Mg2+ ([Mg2+]o) deficiency on isolated rat aortae and rat aortic smooth muscle cells (RASMC). Exposure of isolated, intact rat aortic rings to Mg(2+)-free or Mg(2+)-deficient medium (0.15-0.6 mM) produced endothelium-independent, concentration-dependent contractions: the lower the [Mg2+]o, the stronger the contraction. Pre- or post-incubation of the vessels with low concentrations of U0126, SB-203580, PD-98059, wortmannin, LY-294002, or a SH2 domain inhibitor peptide suppressed [Mg2+]o deficiency-induced contractions significantly. The concentrations of these antagonists required for half-maximal inhibition (IC50) were not very different from the inhibitory constants (Ki) for these drugs. A variety of specific pharmacological antagonists of several known endogenously-formed vasoconstrictors did not inhibit or attenuate the contractions induced by low [Mg2+]o. Mg(2+)-free medium induced a 6- to 7-fold increase in intracellular Ca2+ ([Ca2+]i) in RASMC. Pre- or post-treatment of the cells with U0126, SB-203580, PD-98059, wortmannin, LY-294002, or a SH2 domain inhibitor peptide markedly inhibited the increments in ([Ca2+]i) in RASMC induced by exposure to Mg(2+)-free medium. The present findings suggest that Mg(2+)-deficiency-induced contractions of rat aortae are associated with activation of several cellular signal pathways, such as mitogen-activated protein kinase, phosphatidylinositol-3 (PI3) kinases, and SH2 domain-containing proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.