Abstract

Testicular organoids provide a tool for studying testicular development, spermatogenesis, and endocrinology in vitro. Several methods have been developed in order to create testicular organoids. Many of these methods rely upon extracellular matrix (ECM) to promote de novo tissue assembly, however, there are differences between methods in terms of biomimetic morphology and function of tissues. Moreover, there are few direct comparisons of published methods. Here, a direct comparison is made by studying differences in organoid generation protocols, with provided outcomes. Four archetypal generation methods: (1) 2D ECM-free, (2) 2D ECM, (3) 3D ECM-free, and (4) 3D ECM culture are described. Three primary benchmarks were used to assess the testicular organoid generation. These are cellular self-assembly, inclusion of major cell types (Sertoli, Leydig, germ, and peritubular cells), and appropriately compartmentalized tissue architecture. Of the four environments tested, 2D ECM and 3D ECM-free cultures generated organoids with internal morphologies most similar to native testes, including the de novo compartmentalization of tubular versus interstitial cell types, the development of tubule-like-structures, and an established long-term endocrine function. All methods studied utilized unsorted, primary murine testicular cell suspensions and used commonly accessible culture resources. These testicular organoid generation techniques provide a highly accessible and reproducible toolkit for research initiatives into testicular organogenesis and physiology in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.