Abstract

Abstract Tumor Treating Fields (TTFields) are an antimitotic technology utilising electric fields to disrupt mitosis in cancer cells. TTFields are currently approved by the FDA for the treatment of Glioblastoma Multiforme (GBM) and Malignant Pleural Mesothelioma (MPM). TTFields are delivered through 2 pairs of transducer arrays placed on the patient’s skin. Each pair delivers TTFields in a single direction, and the pairs are placed to provide perpendicular field. Preclinical studies show that 1V/cm is the clinical threshold for the treatment to be effective. Some types of cancers send metastases to the spinal cord and CSF, i.e. leptomeningeal disease. The purpose of this study was to find transducer array layouts that deliver TTFields to the spine at therapeutic intensities of above 1 V/cm. Computational simulations testing the delivery of TTFields to the spine were performed using the Sim4Life 4.0 (ZMT Zurich) computational platform, and the Duke 3.1 and Ella 3.0 (ITI’S, Zurich) realistic computational models of a male and female respectively. “Standard” layouts in which a pair of arrays are placed on the front and back of the patient and second pair on the lateral aspects of the patient failed to deliver TTFields at therapeutic intensities to the spinal cord. This is probably because the spinal cord is surrounded by the CSF and spine, which shunt the electric fields from reaching the spinal cord. However, field intensities above 1 V/cm were observed when delivering TTFields when both arrays were placed on the patients back, with a first array placed close to the neck, and second array placed towards the thighs. In this case, the spinal cord and surrounding CSF act as a conductive cable, directing the electric field along the spine. This novel layout opens the possibility for treating cancerous disease along the spine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.