Abstract

The use of fiber-reinforced polymers (FRPs) for the strengthening and repair of existing concrete structures is a field with tremendous potential. The materials are very durable and, hence, ideally suited for use as external reinforcement. Although extensive work has been carried out investigating the use of FRPs for flexural strengthening, a fairly recent development is the use of these materials for the shear strength enhancement of concrete. The current system investigates the use of posttensioned, nonlaminated, carbon fiber-reinforced polymer (CFRP) straps as external shear reinforcement for concrete. Experiments were carried out on an unstrengthened control beam and beams strengthened with external CFRP straps. It was found that the ultimate load capacity of the strengthened beams was significantly higher than that of the control specimen. Existing design codes and analysis methods were found to underestimate the ultimate resistance of the control specimen and the strengthened beams. Nevertheless, the modified compression field theory provided insight into possible failure mechanisms and the influence of the strap prestress level on the structural behavior. It is concluded that the use of these novel stressed elements could represent a viable and durable means of strengthening existing concrete infrastructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.