Abstract

Ultrathin silicide films were formed by starting from 1–8 nm thick Co1−xNix (x = 0, 0.25, 0.5, 0.75, and 1) at 350 °C–900 °C. For each composition x, there exists a critical thickness above which the transition temperature from monosilicides CoSi and NiSi to a disilicide-like phase increases with increasing film thickness. Below this thickness, the disilicide phase seems to form without exhibiting the monosilicides within the detection resolution limits of transmission electron microscopy and Raman spectroscopy. Raman spectroscopic analysis seems to indicate that Ni could be dissolved in the CoSi lattice to a certain fraction despite the fact that CoSi and NiSi are distinct with different crystallographic structures. Moreover, the disorder-induced Raman scattering in NiSi2 is found to be enhanced by Co incorporation. The observed annealing behaviors are attributed to variations in free energy change for phase transition caused by differences in metal thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.