Abstract
Let n be a nonzero integer. A set of m distinct positive integers is called a D(n)-m-tuple if the product of any two of them increased by n is a perfect square. Let k be a positive integer. In this paper, we show that if {k2, k2 + 1, 4k2 + 1, d} is a D(−k2)-quadruple, then d = 1, and that if {k2 − 1, k2, 4k2 − 1, d} is a D(k2)-quadruple, then d = 8k2(2k2 − 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.