Abstract

We study the extension problem on the Sierpinski Gasket (SG). In the first part we consider minimizing the functional \(\mathcal {E}_{\lambda }(f) = \mathcal {E}(f,f) + \lambda \int f^{2} d \mu \) with prescribed values at a finite set of points where \(\mathcal {E}\) denotes the energy (the analog of \(\int |\nabla f|^{2}\) in Euclidean space) and μ denotes the standard self-similiar measure on SG. We explicitly construct the minimizer \(f(x) = \sum _{i} c_{i} G_{\lambda }(x_{i}, x)\) for some constants ci, where Gλ is the resolvent for λ≥0. We minimize the energy over sets in SG by calculating the explicit quadratic form \(\mathcal {E}(f)\) of the minimizer f. We consider properties of this quadratic form for arbitrary sets and then analyze some specific sets. One such set we consider is the bottom row of a graph approximation of SG. We describe both the quadratic form and a discretized form in terms of Haar functions which corresponds to the continuous result established in a previous paper. In the second part, we study a similar problem this time minimizing \(\int _{SG} |\Delta f(x)|^{2} d \mu (x)\) for general measures. In both cases, by using standard methods we show the existence and uniqueness to the minimization problem. We then study properties of the unique minimizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.