Abstract
Photoluminescence is one of the processes by which photons are emitted after the absorption of incoming photons at a higher energy. But the yield and spectral band shape of the emission can be altered by the optical properties of the luminophore environment through scattering and absorption. To understand these effects on a photoluminescent turbid layer, the Kubelka–Munk model, which is a two-flux approximation of the radiative transfer equation, can be used. Compared to previous works, this translucent layer can be applied on a colored opaque background. The model takes into account the absorption, scattering, and luminescent properties of the layer and the reflection by the background, for both the light excitation and the light emission. The competition between these different optical interactions is studied; e.g., the model can predict the presence of an emission maximum by increasing the thickness of the luminescent layer on a light background. Moreover, the model is extended to two important cases: the presence of a photoluminescent background and the effect of a refractive index discontinuity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.