Abstract

A quantum molecular dynamics (QMD) model is applied to production of light charged particles in nucleon-induced reactions on several light and medium heavy nuclei. The generalized evaporation model (GEM) is used to deal with the statistical decay process of highly excited fragments at the end of the QMD stage. Good agreement with experimental double-differential cross sections is obtained for nucleon emission, but the calculation shows remarkable underprediction for preequilibrium emission of light complex particles, i.e., d, t, 3 He, and 4 He. To improve the situation, a phenomenological surface coalescence model is incorporated into the QMD simulation under the assumption that light complex particles are mainly formed near the surface region by a leading nucleon that is ready to escape from the nucleus during the dynamical process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.