Abstract

Generating potent compounds for evolving analogue series (AS) is a key challenge in medicinal chemistry. The versatility of chemical language models (CLMs) makes it possible to formulate this challenge as an off-the-beaten-path prediction task. In this work, we have devised a coding and tokenization scheme for evolving AS with multiple substitution sites (multi-site AS) and implemented a bidirectional transformer to predict new potent analogues for such series. Scientific foundations of this approach are discussed and, as a benchmark, the transformer model is compared to a recurrent neural network (RNN) for the prediction of analogues of AS with single substitution sites. Furthermore, the transformer is shown to successfully predict potent analogues with varying R-group combinations for multi-site AS having activity against many different targets. Prediction of R-group combinations for extending AS with potent compounds represents a novel approach for compound optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.